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Assessment of Spatial Variation of Risks
in Small Populations
by Wilson B. Riggan,* Kenneth G. Manton,t John R
Creason,* Max A. Woodbury,t and Eric Stallardt

Often environmental hazards are assessed by examiningthe spatial variation ofdisease-specific mortality or morbidi-
ty rates. These rates, when estimated for small local populations, can have a high degree ofrandom variation or uncer-
tainty associated with them. If those rate estimates are used to prioritize environmental clean-up actions or to allocate
resources, thenthose decisions may be influenced by this high degree ofuncertainty. Unfortunately, theeffect ofthis uncer-
tainty is not to add "random noise" into the decsion-making process, but to systematicaily bias action toward the smaIlest
populations where uncertainty is greatest and where extreme high and low rate deviations are most likely to be manifest
by chance. We present a statistical procedure for adjusting rate estimates for differences in variability due to differen-
tials in local area population sizes. Such adjustments produce rate estimates for areas that have better properties than
the unadjusted rates for use in making statistically based decisions about the entire set ofareas. Examples are provided
for county variation in bladder, stomach, and lung cancer mortality rates for U.S white males for the period 1970 to 1979.

Introduction
Evaluation ofthe geographic variation ofdisease-specific in-

cidence and death rates across small areas is important in iden-
tifying potential environmental hazards and in determining
priorities for responses to ameliorate such environmental
hazards. The finer the geographic detail (i.e., the smaller the
area), the greater is the capacity to identify potential en-
vironmental causes ofdisease risks. Unfortunately, there is a dif-
ficulty in using the observed rates for small areas to make such
decisions, i.e., small areas also tend to have small populations.
The precision ofa rate estimate is inversely related to the size of
the local population and number of index events in the area. If
there is a wide range of population sizes over the set of small
areas, we can expect the rates for the smallest populations to have
the greatest variability and thus to be overrepresented in groups
ofareas with highest and lowest rates. Consequently, use of the
observed rates for small areas may introduce systematic errors
in decision making ifdecisions require the identification ofareas
with rates that are truly extreme.
For example, if one had resources to conduct detailed epi-

demiological studies in the 0.1 % of small areas (e.g., the 3061
U.S. counties) with the highest rates, the studies would be almost
certainly targeted to the subset ofareas with the smallest popula-
tions which would have the most extreme (both high and low)
rates due to random variation. Likewise, ifone wished to target
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clean-up activities in a given year to the 10% ofsmall areas with
the greatest environmental hazards, use of the observed rates
would again lead to allocation ofclean-up resources to areas with
small populations and large random variation in rates.
The decisions based on the observed rates are even more prob-

lematic ifconsidered in terms oftargeting actions to benefit the
largest number ofpersons. That is, the 10% most extreme rates
would, by chance, tend to be concentrated in areas with very
small populations which, being smaller than average, would con-
tain far less than 10% of the total population.

In addition, in studying the patterns of environmental risks
over small areas, the use ofobserved rates may lead to distortion
of spatial patterns because small populations with extreme
deviations will dominate those patterns. To identify the inter-
relation of risks over spatial domains, it is again necessary to
adjust the rates for chance variations due to small population
sizes.
To deal with these problems, specialized statistical procedures

were developed to produce stabilized rate estimators for small
populations that are more precise on average (i.e., across the total
set of small area populations) than the usual independent maxi-
mum likelihood rate estimator for each area, i.e., the observed
"rate" or the ratio ofevents to population exposure in the area.
To improve the average level ofprecision, these procedures bor-
row information from the distribution of rates to adjust the rate
estimator for each area, i.e., the average rate over all areas is
combined with the observed rate in each local area to produce a
stabilized rate for the area. The average rate is a biased estimator,
and the observed rate is an unstable estimator (i.e., subject to
large random variation) for each local area. Combining weights
are calculated which simultaneously a) minimize the bias ofthe
average rate and b) increase the stability ofthe observed rate. If
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the weights are appropriately selected, then stabilized rate
estimates for the set of local area populations can be produced
where the standard errors ofthe rates are independent (or near-
ly so) of the size of each area's population. Thus, decisions re-
quiring the identification oftruly extreme rates can be more con-
fidently made on the basis ofthe stabilized rates. The statistical
methods that can be used to produce composite rate estimates
with the desired properties are based upon "empirical Bayes"
principles [e.g., Morris (1,2)].

In the remainder ofthe paper we briefly describe two empirical
Bayes procedures (3,4) and then apply them to data on U.S.
cancer death rates at the county level (5). The effects ofthese ad-
justments are illustrated using maps ofthe between-county varia-
tion ofthree types ofcancers for white males in the United States
in 1970 to 1979.

Data
The data employed in the analyses are drawn from files of

county-specific cancer death rates prepared by the U.S. En-
vironmental Protection Agency (EPA) from detailed micro-data
mortality files prepared by the National Center for Health Sta-
tistics and censal and intercensal population estimates provided
by the U.S. Bureau of the Census (5).
Death rates were calculated for 18 age categories (0 to 4 years,

5 to 9 years, etc., up to 85+), race (whites versus nonwhites),
sex, county, and 15 different types ofcancer identified from the
underlying cause ofdeath coded on U.S. death certificates (4,5).
Tabulations of death and population counts were prepared for
3061 counties (or county equivalents). These were adjusted to
match the set of3073 counties defined by the available mapping
software (5). Rates were available for single calendar years bet-
ween 1950 and 1979. Recently these files have been extended to
1987, the most recent date for which mortality data are available.
We restricted the analysis presented below to three of the 15
cancers (bladder, stomach, and lung) for white males for the
decade 1970 to 1979.

Preliminaries
There are several different definitions ofthe "observed death

rate." Each implies a different treatment of age. One option,
stratification by age, produces a vector of 18 rates for each coun-
ty. A second option is to aggregate over age, obtaining the "crude
death rate" (CDR) for the ith county as

I J

CDRi= I yii/ nnii (la)
j=l j=l

=Yi+ / ni+ (lb)

where yij is the count ofdeaths in county i for the jth age group,
nii is the population in that group, and J = 18. The + subscript
indicates summation over age.
Though CDRi is an observed death rate, it is unsatisfactory

for comparing county rates since two counties with identical age-
specific death rates can yield different crude death rates because
of differences in the age-specific population counts, nij (6).
Thus, it is conventional to perform "direct age standardization"

of the vector of age-specific death rates (DASDR) using

J J
DASDRi = I Nj (yij/nij) / ,

j=1 =

I N.
= I J * m

(2a)

(2b)

where mj is the death rate for age groupj in county i. Ni values
are the age-specific standard populations used to weight the m,-
values [here the 1970 U.S. population was used as a standard (5)].
For comparison, the "marginal age standardized death rate"

(MASDR) can be calculated which, when Nj = n+j, is simply
the crude death rate for the entire set of areas,

MASDR= I(N)ir (3a)

i N.
= E -J m

j=l +
(3b)

where m*,, is the death rate for age groupj at the national level.
Because comparisons ofDASDR, are not confounded by dif-

ferences in the age structure of the population between counties,
it is often used as the observed death rate. It is, however, only an
estimate ofthe rate because its value depends on the choice of a
standard population. More important, however, DASDR, is ac-
tually more statistically unstable than CDRi. Specifically, Eq.
(2b) shows that when ni, is small, nj is substantially smaller.
Consequently, random variation in yij will be large relative to
that of yi+. Thus, there is additional instability in DASDRi not
present in CDR,. There are three ways to deal with this addi-
tional instability when making comparisons.

First, North Carolina (7) presents maps of both the CDRi
vallues and DASDRK values and cautions the reader to beware of
discrepancies. Second, the National Cancer Institute (NCI) (8,9)
performs statistical tests of the significance ofelevated DASDR,
values and maps the results ofthe test (rather than the values of
the rates) and indicates which counties had elevated rates and
which of those with elevated rates had statistically significant
elevated rates. In both cases, the user is required to simultaneous-
ly deal with two complex patterns of geographic information.
The methods provide no procedures for ranking the county rates
from lowest to highest.
A third strategy is to replace direct age standardization with in-

direct age standardization using

IASDRi =
i

- MASDR

I n.. m,.
j=1

= r; MASDR,

(4a)

(4b)

where ri is the standardized mortality ratio (SMR) in county i.
This rate is generated by applying a "standard" mortality
schedule to the population age structure in the county. The
relative risk between the observed overall count of deaths (y,+)
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and that expected from the application ofthe national mortality
rates to the county population is represented by ri.

Like DASDR, values, ISADR, values are comparable between
counties, but under a more restrictive assumption [proportional
hazards (6)]. On the other hand, they are more stable than
DASDRi values because they depend only on the total death
count, yi, not the 18 age-specific counts, yij. Thus, their stabili-
ty is comparable to that of CDRi values.
Because ri is proportional to IASDRi, the analysis of local

area populations is often carried out using ri (10,11). Instability
in ri is typically handled by aggregating adjacent areas to obtain
an area with a larger population size. This, ofcourse, loses some
of the geographic detail that is necessary to relate the elevated
mortality risks to possible environmental causes.

Methods
We briefly discuss two distinct forms ofempirical Bayes (EB)

analysis. The first, the quintile model, is based on an extension
of the SMR model in Manton et al. (3: 810) to age-specific death

rates. The second, the two-stage model, analyzes both total and
age-specific death rates, but sequentially. The statistical details
and theoretical justification of the second model are presented
in Manton et al. (4). This section briefly examines EB concepts
to introduce the nonstatistical reader to the basic principles ofthis
method. In the results section we compare the empirical perfor-
mance of the two methods.

If the observed rates are inadequate for mapping because of
their large random fluctuations, one must find rate estimates that
are more stable to replace them with. One might use rates for
each area assuming that the rates are temporally stable. For ex-
ample, in the analysis below we pooled each area's data by
decade. However, pooling data over too long a period oftime may
cause temporal changes in risk to be missed. A decade was the
longest period we felt could be substantively justified. However,
even decade-specific rates were still often unstable. Thus, it was
necessary to generalize the principle ofaveraging beyond the cur-
rently available data to a hypothetical case where the observed
rate is one ofan infinite number ofoutcomes that could have hap-

)

FIGURE 1. Classification of 3061 counties of the continental United States according to population size. Class 1 (white) contains 2340 counties with the smallest
populations; class 2 (light gray) contains 497 counties with the next smallest populations; class 3 (middle gray) contains 148 counties with the next smallest popula-
tions; class 4 (dark gray) contains 57 counties with the next-to-largest populations; and class 5 (black) contains 19 counties with the largest populations. The population
sizes are based on averages of the census counts for 1960 and 1970 for white males. The total populations in each class are equal, accounting for 20% ofthe overall
total.
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pened. The theoretically possible outcomes are described in dif-
ferent ways by different EB procedures and the actual data are
used in different ways depending upon how the theoretical
distribution of outcomes is assumed to be generated. This
generalization is the underlying essence of the EB models.
The term "empirical Bayes" was introduced by Robbins

(12,13) to refer to decision problems in which the identical con-
ditions are faced repeatedly. For each decision, new data are pro-
vided and one wants to estimate the long run average over
repeated, identical experiments. This problem is often referred
to as "nonparametric empirical Bayes" (NPEB) (1,14) and is
discussed by a number ofauthors (15-17).
NPEB is not direcdy applicable to the mapping problem

because it requires multiple observed rates for each county for
each decade produced under identical conditions. The NPEB
procedure was developed for situations where the identical ex-
periment could be repeated. We cannot repeat the identical con-
ditions producing the set ofcancer deaths in a county. Unlike the
NPEB problem, however, we do have observations on multiple
(n = 3061) counties and, although the conditions in these coun-
ties are not identical, the decisions to be made for each county
are the same. Ifthe age-specific population counts were constant
over counties, the decision problems would be identical.
Morris (1) uses the term "parametric" empirical Bayes (PEB)

to refer to EB problems where the conditions producing each
event (e.g., a county cancer mortality rate) are similar in some
respect, but not identical. By introducing a parametric distribu-
tion into the EB model the rate estimator for each county can be
made dependent, through the parameters ofthe selected distribu-
tion, on the rate estimator for all other counties. In effect, this
allows the information required to estimate one county's long run
average to be obtained from the rates in all other counties (i.e.,
an average is obtained for the entire set of counties). This involves
assuming that, say, a Poisson process governs the generation of
cancer deaths in each count but the Poisson rates in each coun-
ty may be different. Thus, the similarity is the nature of the
generating process. Rates are made comparable by estimating the
distribution of Poisson rates across counties.
PEB models are closely related to the Stein (18) effect and

James-Stein estimator (19), as shown in Efron and Morris (20).
The PEB approach readily generalizes for many contests. A
James-Stein-type estimator was used by Fay and Herriot (21) to
estimate small area income averages. PEB estimators have been
used extensively for estimating vital rates in small areas
(3,4,22-29). Thus, there is a developing consensus that PEB
models can provide useful solutions to the problem of rate
estimation for small local populations. Ofcourse, the results of
each application depend on the assumptions used in model
specification. Knowledge ofthese dependencies is important to
understand the properties ofthe different versions ofthis method.

Quintile Model
The quintile model involves sorting counties into five (some

other grouping could have been used) size classes, with each
class containing 20% of the total population (not 20% of the
areas), i.e., class 1 contains 2340 counties; class 2 contains 497
counties; class 3 contains 148 counties; class 4 contains 57 coun-
ties; and class 5 contains 19 counties. On average, counties in
class 5 are more than 120 times larger than counties in class 1.

The counties and their class designations presented in Figure 1.
Because counties in each class are approximately equal in size,

it is assumed that the PEB decision problem for the quintile is the
same. This assumption could be improved by increasing the
number of classes. Two additional assumptions are made: the
variation of each area's rates is determined by the Poisson
distribution and the total variation of all rates is proportional to
the Pbisson variation. The difference between the total variation
and the "natural" variation is called the "excess" variation, (i.e.,
variation beyond that due to the Poisson with the rate parameter
for an area) and can be tested using the methods ofCollings and
Margolin (30) and Dean and Lawless (31).
The assumption of Poisson-distributed counts of deaths in

counties is consistent with the test procedures used by NCI (8,9).
A more fundamental justification is provided by Brillinger (32).
The assumption of proportional excess variation is consistent
with the heterogeneity model proposed by Manton and Stallard
(33) and Manton et al. (34). This model represents the rates for
each local area as a composite of the risks for all individuals in
that area. As small areas are combined to form larger areas, the
rates for the different areas are weighted according to population
six to form a composite rate, and the variances retain their pro-
portionality to the Pbisson variation.
Under these assumptions, the empirical Bayes age-stan-

dardized death rate for county i is

EBASDR; = W * DASDR. + (I - Wq1)IASDRq1,I I~+lW.IAD (5)

where qi denotes the quintile class for county i; Wq is the
weight for this quintile class (3)

Wq =aq/(l +aq), (6)

which is the ratio of excess (aq) to total (1 + aq) variation in the
quintile class; and IASDRq is the indirect age standardized
death rate for all counties in the quintile class; i.e.,

IASDRq = rq MASDR, (7)

where rq is the quintile SMR

(8)rq= X
ie Classq

Estimation of rq and aq is conducted on age-specific data us-
ing maximum likelihood methods (33). The age strata are treated
independently in estimation [unlike Manton et al. (3), where
total deaths, yj, were analyzed], with the age standardization in
Eq. (5) conducted as a final, separate step. The counties are also
treated independently in estimation, so that no specific spatial
correlation structure is assumed. Ifclusters ofelevated rates are
found in the maps, these are not the result ofmodel assumptions,
but reflect real variation (and covariation) between county rates.
One difficulty in interpreting patterns occurs when quintile

SMRs are very different and quintile weights, Wq, are small. In
this case, the spatial patterns can become dependent on the quin-
tile classification system, i.e., the patterns are dependent on how
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the counties are grouped into classes. The second method avoids
this problem.

Two-Stage Model
The two-stage model derives from the quintile model by in-

creasing the number of classes until each county is in its own
class. In this case Eq. (5) becomes

EBASDRi = W; * DASDR. + (1 - W.) IASDRi, (9)

where IASDR, depends on ri as in Eq. (4b). This is not satisfac-
tory since ri is unstable. Thus, the two-stage approach is a)
generate EB estimates (Pi) of ri to remove instability and b) use
these estimates in Eq. (9) along with revised W, values to make
the final estimates:

EBASDRj =W * DASDRi + (I - W)pi MASDR, (10)

where

Pi = Bi ri + (I - Bi) ' (11)

B. Yi+/ri (12)
+ yi+/r;

and

W = a/(1 +c). (13)

Thus, the EB SMR estimator Qi is a weighted average of the
observed SMR (r,) and the overall SMR (1.0). The weight Bi
depends on the expected number of deaths (yi+/ri) in county i.
The parameter ,B is the variance of Pi over all counties (4). The
second-stage weight, W, depends on the parameter ca, in-
dependently of quintile or county.
Because Pi is estimated in the first stage using yi+, age strata

are no longer treated independently. They are treated in-
dependently, conditional on Pi, in the second stage, but this is
not the same as the fully independent treatment in the quintile
model. Conditional independence is consistent with a model
where county level effects are correlated over age via Pi. The
quintile model could be modified to reflect county level effects
by analyzing yi+, rather than yij
The counties are treated as independent in the two stage model,

so that no spatial correlation structure is imposed. Furthermore,
whatever spatial patterns do emerge cannot be confounded with
the quintile classifications, since none is used. While small Wq
value produce problems in the quintile model, smallW values
are desirable in the two-stage model. They imply that no excess
variation (a) exists, beyond the natural variation, after
calculating the first stage estimates. ForW or ca = 0, Eq. (10)
simplifies to

EBASDRi = B. IASDRi + (1 - Bi) MASDR. (14)

Parameter Estimates
Quintile Model
The parameter estimates for the quntile model are presented

in Table 1. The SMRs (rq values) for all three cancer types in-
crease monotonically over quintile class, except for class 5 for
lung cancer. The lowest SMR is 80.7% for class 1 for bladder
cancer. The highest SMR is 123.2% for class 5 for stomach
cancer. The national death rates (MASDRs) are 7.3 x 10-', 8.9
x 105, and64.2 x 10-5for bladder, stomach, and lung cancer,
respectively. Over time the national death rates have a) been
stable for bladder cancer (7.3 x 10-5 in 1950-59), b) declined
about 4% per year for stomach cancer (from 20.1 x 10-5 in
1950-5), and c) increased about 4% per year for lung cancer

(from 29.8 x 10-5 in 1950-1959). The different temporal pat-
terns ofchange led us to expect different spatial patterns as well.
The product of rq and MASDR yields the indirect age standar-
dized rate for quintile class q, as indicated in Eq. (7).
The second set ofparameters, aq, reflects the excess variance

ofthe observed death rates relative to their naturl variation (32).
All parameters are statistically significant, indicating that excess
variation is present. This excess variance increases mono-

tonicaliy over quintile class, ranging from 2.4% for class 1 for
stomach cancer to 477.5% for class 5 for lung cancer. The excess
variance also increases monotonically over cancer type, except
for class 1 for stomach cancer. Given the role of aq in the
weighting fonnula [Eq. (6)], these patterns of increase provide
support for the assumption that the weight in formula [Eq. (12)]
increases with the expected number of deaths (not necessarily
population size) and that increases are cancer site dependent
(through (s). The weights implied by the aq values in Table 1

rangefroma low ofWq = 0.023 toa highofWq = 0.827, with a
median valueWq = 0.250. Thus, the quintile specific rate domi-
nates the observed rate in Eq. (5) in most cases considered.

Two-Stage Model
The parameter estimates for the two-stage model are presented

in Table 2. The first stage involves estimation and testing ofthe
variance ofthe set of 3061 county SMRs. The test is significant
for the three cancer types. The estimated variance (13) ranges
from4.7 to 7.1%. Alternatively, the coefficientof variation ranges
from 21.7 to 26.6%, which is consistent with the range of quin-
tile specific SMRs (rq values) in Table 1. Indeed, by equating the
weights in Eqs. (6) and (12) and solving for oaq, we find that Table
2 predicts that the stomach cancer aq values should be larger, on
average, than the bladder cancer aq values by the factor 1.8 =
(7.1/4.7) x (8.9/7.3) and the lung cancer values should be larger

Tble 1. F'ermer , U.S whie males, 970-1979, quintie model.
Quintile rq x 100, aq x 100,
class (q) Bladder stomach Lung Bladder stomach Lung

1 80.7 83.8* 93.6 3.8 2.4* 32.8
2 96.6 88.2* 98.4 11.9 12.8t 82.0
3 105.2 99.1 103.1 20.6 40.1t 140.9
4 110.9 110.3* 104.8 23.4 112.3t 376.8
5 112.4 123.2* 101.6 33.3 151.1t 477.5

MASDRx 1o-5 7.3 8.9* 64.2
MASDR, marginal age-standardized death rate.
*Parameters significantly different from 1.0 (p < 0.05).
tParameters significantly greater than 0.0 (p < 0.05).
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Table2. Paameterresfimates, U.S white males, 1i7O-I979, tw-stagemodel.

Site B x 100 a x 100 MASDR x 100
Bladder 4.7* 0.1 7.3
Stomach 7.1* 0.0 8.9
Lung 5.0* 8.4* 64.2
MASDR, marginal age-standardized death rate.
*Parameter significantly greater than 0.0 (p < 0.05).

by the factor 9.4 = (5.0/4.7) x (64.2/7.3), using MASDRs from
Table 1. The median factors in Table 1 are 1.9 (= 40.1/20.6) and
8.6 (= 32.8/3.8), respectively. Thus, the two sets of parameter
estimates are in good qualitative agreement.
The second stage tests the residual excess variance (a) from the

first stage. For bladder and stomach cancer, this component of

variance is negligible: The first stage-model is adequate to
characterize those cancers. For lung cancer there is a small
but statistically significant residual component ofexcess variance
(8.4%). This means that there is variation in the age-specific lung
cancer death rates that is not captured in the proportional ha-
zards assumptions of the SMR model. Previous investigations
strongly suggest that cohort effects differentially operating over
geographic area produced the excess variation for lung cancer
(35).
The EB estimator for bladder (since a = 0) and stomach (since

a=0) cancer obtains from Eq. (14). The EB estimator for lung
cancer (since a >0) obtains from Eq. (10). Thus, the excess
variance in the second stage is accounted for in the more com-
plex weighting formula. It is not ignored.

=

-W-W 'Irv ICDcode(s): 188,189.3
_____,_,, , , _,___ aB_ by cowy

O i0 30 30 40 0 d0 70 so 0 100
a

FIGURE 2. Guide to observed rates of cancer ofthe bladder and other urinary organs for U.S. white males, 1970-1979 map. The map key and frequency polygon
for the 3061 county rates are in the lower left corner. Shading is as follows: black, counties ranked in the highest 2% of all counties (98th and 99th percentiles);
dark gray, counties in the nexthighest 3% ofall counties (95th to97th percentiles); medium gray, counties in the next highest 5% ofall counties (9Oth to94th percen-
tile); light gray, counties in the next highest 15% of all counties (75th to 89th percentile); white counties in the lowest 75% of all counties (Oth to 74th percentiles).
These cut points are graphically illustrated in the lower tone bar. The triangle below the lower tone bar indicates the relative ranking ofthe national rate. The up-
per tone bar relates these cut points to their locations on the frequency polygon constructed from the distribution ofthe 3061 county rates. The triangle between
the upper tone bar and the frequency polygon indicates the location ofthe national rate. The histogram in the lower right ofthe map (in the GulfofMexico) shows
the age-specific death rates for all age groups with significant numbers ofdeaths at the national level. The ICD codes below the histogram give the disease categories
in the 9th Revision ofthe International Classification ofDiseases. Additional information is provided in Riggan et al. (5).
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Maps
In this section we present maps ofthe observed death rates, the

quintile model rates, and the two-stage model rates for each of
the three cancer types for U.S. white males for 1970to 1979.

Bladder Cancer
Bladder cancer is of interest in that it is temporally stable, ex-

hibits modest variation over counties, has been linked in correla-
tion studies with chemical exposures in certain industries, and
has been previously identified by NCI as concentrated in the
Northeast (particularly New Jersey), around the Great Lakes,
and in southern Louisiana (36). Figure 2 displays the observed
rates for bladder cancer.

The rates in the NCI areas are moderately elevated, but higher
rates are manifest in the western Great Plains and Rocky Moun-
tains. Comparison with Figure 1 shows that these are almost all
sparsely populated (class 1) areas. TheNCImaps indicatethatmost
ofthose highly elevated rates are statistically nonsignificant (9).

Figures 3 and 4 display the two sets ofEB rate maps. Both shift
the locations of the elevated rates to the NCI areas (36), so that
there is a general concordance between the two models. Ex-
amination of the frequency polygon for county rates, however,
shows that the quintile model has five modes (at 5.9, 7.1, 7.7, 8.1,
and 8.2 x 101). This is because the results for the quintile
model depend on how the counties are grouped into six classes,
with the dependence inversely related to the size of the aq pa-

rameters. From Table 1, it follows that the effect is greatest for
bladder cancer. This is undesirable for producing maps for a

large number ofdifferent types of cancer. The two-stage model
was adopted for use in the U.S. EPA mapping volume (5) because
no a priori size grouping of counties was necessary.

Stomach Cancer
Stomach cancer is of interest because its rates are declining,

with the declines associated with cohort differentials [i.e.,
younger cohorts have lower risks; see Manton and Stallard (37)].
Figure 5 displays the observed rates (DASDRi values) for sto-
mach cancer.

Clearly there is a concentration of elevated rates (18.3 x l0-)
in the Dakotas, Minnesota, Wisconsin, upper Michigan, New
Mexico, Colorado, and several other central states. Comparison
with Figure 1 shows that these are almost all sparsely populated
(class 1) areas.

Figures 6 and 7 display the two sets ofEB rate maps. Both shift
the elevated rates to more populated areas. Examination of the
frequency polygon shows that both models have unimodal
distributions of predicted rates. For the quintile model, however,
modes for class 1 at 7.5 x 10-5, class 2 at 7.9 x 10', and class
3 at 8.8 x 10' are discernable. The upper tail ofthe distribution
is spread more than in Figure 3 because of the larger aq values
(Table 1). Less than 5% ofcounties in Figure 6 are above the na-

tional death rate, whereas in Figure 7 more than 25% are above
that rate. in this case, it follows that the two-stage model pre-
serves more ofthe natural variation in the rates. The fact that the
statistical test at the second stage showed that there was no excess

variation suggests that the two-stage model does better in deter-
mining the "correct"' level of variation.

In Figure 7 there are considerable changes in the spatial pat-
tern from that in Figure 5. The highest rate is now 15.9 xlO-5,
the lowest rate 4.4 x 10-5 instead of 0.0. There continues to be
high rankings of rates in Minnesota, New Mexico, North
Dakota, and upper Michigan, but now rates in northeastern
states, southern California, Illinois, lower Michigan, and Loui-
siana have much higher rankings-features hidden by the ex-
treme variation of rates in the smallest counties in Figure 5. A
number of these areas are identifiable as being statistically
significant in the NCI maps (36). Thus, we have additional
evidence that the rate estimates from the two-stage model are
reasonable and would lead to reasonable rankings of the coun-
ties with elevated rates.

Lung Cancer
Lung cancer is interesting because it has increased in risk over

time, it is the most frequent cancer cause ofdeath, and it was the
one cancer type wher the second stage adjustments proved
statistically significant (4). Figure 8 displays the observed death
rates (DASDR, values) for lung cancer. The greatest concentra-
tion of risk is along the Mississippi and Ohio Rivers in eastern
and Gulfcoastal areas and in counties ofGeorgia. The observed
death rates range from 0 to 269.1 X 10-5.

Figures 9 and 10 display the two sets ofEB rate maps. In both
sets ofmaps the shifts in ranking are smaller than for stomach and
bladder cancer. There is much greater concordance between the
two EB rate maps. In Figure 10 the rate varies from 23.6 to 98.8
x 10-5. The shrinkage of the extreme variation, though still
considerable, is less than for stomach cancer because of the
greater number of lung cancer deaths (e.g., the highest stabilized
rates are one-third of the highest observed rates; for stomach
cancer, the highest stabilized rates were one-fifth of the highest
observed rates). It is interesting that most counties in Montana,
North and South Dakota, Colorado, and Utah lose their rankings
as high risk areas because of stabilization. What is most in-
teresting is the reinforcement of the high risk patterns in coastal
areas in the east and along the Mississippi and Ohio Rivers.

Discussion
Maps based on the stabilized rate estimates allow new spatial

features of cancer mortality risks to be identified that reflect ab-
solute levels of risk by using composite estimators that weight the
statistical evidence in several ways. The rate stabilization pro-
cedure helps in identifying broad spatial patterns suggestive of
hypotheses about the sources and nature ofenvironmental risks.
In addition, the rate stabilization procedure produces rate
estimates for specific areas that allow improved selection of
groups ofareas for specific types ofactions to be implemented.
This was illustrated by comparisons with Figure 1, which showed
that rate stabilization reduces the assigned rankings for areas with
small populations, thereby reducing the odds of incorrectly iden-
tifying a small area as a high risk area. Separate comparisons of
maps produced by the two-stage model (5) with corresponding
NCI maps (9) showed that NCI's statistical screening procedure
yielded groups of elevated counties that closely matched the
highest ranked counties under the EB stabilization procedure.
Though it is comforting that the NCI procedure and our EB pro-
cedure identify comparable sets ofhighly elevated country rates
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for the selected cut points, the EB procedure produces rankings
of individual counties, whereas the NCI procedure does not.
With rankings, we have the flexibility to select different cut points
based on different decision problems. NCI's use of a selected
statistical confidence level (e.g., 5 %) does not mean that 5% of
the counties will necessarily surpass that confidence level, under
the null hypothesis ofno significant differences in county rates.
For example, depending upon the tpe ofcancer and its frequen-
cy, one could have 4, 7, ormore of the counties pass the 5% con-
fidence limit. This will be problematic for certain decision prob-
lems such as when one has a fixed level of resources to conduct
some actions in a fixed number ofcounties. The NCI procedure
requires recomputation of all county classifications ifthe deci-
sion procedure, or a utility analysis, suggests that an alternative
cut point may be more appropriate. Because it provides a fixed
ranking ofall counties, the EB procedures do not have his prob-
lem. Thus, the rate stabilization procedure has appropriate
operating characteristics for accomplishing several types of
scientific and environmental policy related tasks.
The applications ofthese procedures to death rates is not their

only possible use. They could be used for analysis ofany type of
health, or health service, related event in small local populations,
e.g., the risk ofaccidents or the use ofrenal dialysis. This can be
accomplished without the necessity ofmaking strong modeling
or distributional assumptions about the spatial distribution of
mortality or morbidity risks, using standard epidemiological
measures of risk.

Research reported in this paper is supported by EPA Cooperative Agreement
no. CR811090 and CR815811-01-1 and NIA grant AG01159.
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